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ONSET OF COHERENT LARGE-SCALE MOTION IN A PLANE TURBULENT WAKE 

O. B. Budneva and O. A. Likhachev UDC 532.5117.4+532.526 

In the present article we give the results of a theoretical investigation of the re- 
sponse of a plane (two-dimensional) turbulent wake to an external harmonic disturbance. The 
underlying concepts and the approach used for the stated problem are discussed in [I]. Apart 
from the fact that the flow geometry differs from [i], we also consider the influence of 
crossflow variation of the turbulent viscosity on the evolution of large-scale disturbances. 

i. Self-Similar Plane Turbulent Wake. Following [i], we introduce the turbulent Rey- 
nolds number for a self-similar wake: 

Rew = uob~w(----- const ) ,  (1. I )  

where VT(X) ~ u0b is a characteristic turbulent viscosity in the cross section of the wake 
at the longitudinal coordinate X = (x - x 0) measured from a fictitious origin x0, and u0 and 
b are local velocity and length scales. The length scale is given by the relation 

b = ( v ~ X / U ~ ) l / 2 .  (1.2) 

The resistance offered by the body against a flow with velocity U~ has the form 

F = 9 JU(U--U=)@ (--pUiO) ( 1 . . 3 )  

(O is the momentum loss thickness). We represent the average flow velocity in self-similar 
far-wakes by the expression 

U = U ~ [ 1  - -  ~%(~)] ,  V = U ~ o ( ~ )  ( 1 . 4 )  

(~ = u0/U~ << 1 and ~ = y/b is the dimensionless transverse coordinate). We rewrite Eq. (1.3): 

O=sbd~--s~-bYvJ.= fffib(q) dq, n = i ,  2. (1.5) 

Disregarding the term O(e 2) in Eq. (1.5) and making use of Eqs. (I.i) and (1.2), we obtain 
expressions for the local scales: 

uo /u~  = c ( X / B e ~ ) - v t  b = C(X/Re~)V~ C = (O/J~)vt ( i . 6 )  

We express Re T in a form suitable for experimental evaluation: 

Re~ = (Xuo)/(bU~).  (i.7) 
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According to the flow self-similarity condition, the Reynolds stresses have the form 

u'v --~ = u~ (~). (1. s) 

Disregarding viscous stresses and terms O(g 2) and making use of Eqs. (1.7) and (1.8), we ob- 
tain the following relation from the average equations of motion: 

(t/2)(% + ~ )  = R~ ~' (1 .9)  

(the prime denotes differentiation with respect to q). Integrating Eq. (1.9), we obtain an 
expression for the self-similar Reynolds stresses: 

~ (2R%)-~q%. ( i. I0) 

The system is closed by the following relation, which expresses the Boussinesq hypothesis 
of turbulent viscosity: 

= (~TaU/ay)l(pu~). (1. ii) 

From relations (i.i0) and (i.ii) we obtain an equation for the self-similar average-velocity 
deficit: 

~o = exp (--ln2.,/~),  (1.12) 

where the transverse velocity scale is chosen in accordance with [i]. We denote it by L 0. 
The transverse component of the velocity is determined from the equation of continuity and 
Eqs. (1.4) and (1.7): X0 = q ~0/2Re T. The experimentally determined average velocity dif- 
fers only very slightly from the functional relation deduced from Eqs. (1.4) and (1.12); it 
has the form [2] 

U/U~ -- t ~ e exp ( - - A ~ - - B q 4 ) , A  = 0,637, B : 0,056. 
( 1 . 1 3 )  

An expression for the turbulent viscosity is obtained from relations (I.I0) and (I.ii): 

~j(p~,~) = A/(A + 2B~f) ( ~  N). ( 1 . 1 4 )  

The r o l e  o f  v i s c o s i t y  e f f e c t s  can be e s t i m a t e d  f rom Eqs.  ( 1 . 1 )  and ( 1 . 5 ) :  v/v T = Jx(ReT/  
Re0) (Re 8 = U~/v). The c o n s t a n t  J1 ,  which  i s  c a l c u l a t e d  a c c o r d i n g  t o  Eqs.  ( 1 . 1 2 )  and ( 1 . 1 3 ) ,  
has  t h e  v a l u e s  ( ~ / l n 2 )  1/2 = 2 . 1 3  and 2 . 0 5 .  E x p e r i m e n t a l  s t u d i e s  [2 ,  3] g i v e  J1 = 2 . 0 6 .  

We use experimental data to determine the values of Re T. Sreenivasan [3] and Narasimha 
and Prabhu [4]have introduced the parameters 

W :-- ( u o / U ~ ) ( x / O )  1/2, ~ : Lo(xO)-V~, ( 1 . 1 5 )  

whose variation in the flow direction should exhibit the tendency of the motion in a plane 
turbulent wake toward universally self-similar flow. By analogy with Eq. (1.7), we introduce 
the parameter ReTx = W/A, which corresponds to the replacement of X by x. This relation 
gives the local value of Re T, as opposed to Eq. (1.7), which gives the average value of Re T 
characterizing the intermediate self-similar regime. Figure 1 shows ReTx as a function of 
the relative average-velocity deficit for various plane turbulent wake patterns (points land 
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2 correspond to circular and square cylinders, points 3 and 4 to single- and two-layer flat 
plates, points 5 to a circular cylinder, and points 6 to a circular cylinder in a turbulent 
flow); ReTx varies as the wake evolves, and for some generators its variation is nonmonotonic. 
The local values can also be determined from measurements of the Reynolds stresses; by means 
of Eq. (i.i0) (see Fig. 1 and the results of [5]). The evolution of the flow behind bodies 
of various configurations retains its individuality, evidently because of the existence of 
large-scale disturbances, the nature of whose development depends on ReTx and on the pres- 
ence of external disturbances. When the background turbulence contains disturbances approach- 
ing the most dangerous kind for the given flow pattern in the wake, turbulent transfer can 
be intensified considerably because of the development and subsequent disintegration of large- 
scale disturbances [5]. Experimental values for a large number of plane turbulent flow pat- 
terns are given in [2], including (in particular) the average values of the parameters W 0 and 
A0 [which are analogous to (1.15), but with X in place of x]; the values of Re T = W0/A0 calcu- 
lated from them lie in the interval 3.46-6.96. The boundary values of Re T are those for the 
wake of a flat plate with superimposed external harmonic disturbances and a solid flat baffle. 
Equation (1.15) can be used in place of (1.5) to obtain a linear approximation relating the 
scales u0 and L0: ~ = ~L0/AoW0 . The average value I/AoW0 = 1.97 can be substituted for the 
integral Jl in the expressions for the local scales (1.6), which describe the existing ex- 
perimental data very well in this case. 

2. Statement of the Problem. A method for investigating the linear response of turbu- 
lent wakes to an external harmonic disturbance is described in detail in [i]. We merely note 
certain departures associated with the freestream geometry and the variable turbulent vis- 
cosity. As in [i], we seek solutions of the linear response equations in the form 

{ ( ~ v . ~ ) }  {~U~[u(q), v(~]), wO])]] . . . .  

= , ~ exp (~ ) ,  
p e2U~q 0]),. Re~ J 

where notation has been introduced for the velocity components (u, v, w) corresponding to the 
Cartesian coordinates (x, y, z). We specify the phase of the disturbances by the relations 

a o / a x  = o~o + (~/Re~) ~o ( X ) ,  o o / a z  = ~o, ao, /a t  = - -  o ~ 

(~0 and 6 ~ are the longitudinal and transverse wave numbers). According to Eq. 
phase of the disturbances has the form 

(2.1) 

(2.1), the 

Relying on assumptions set forth in [i], we obtain a system of ordinary differential equa- 
tions in the amplitude functions of the perturbed motion. The Squire transformation reduces 
this system to a single fourth-order equation in the transverse component of the velocity of 
the disturbance: 

i [ ( a l  - -  c t R e r % ) ( D  2 - -  15 2) ~- a H % D 2 % ] v  - -  ( 1 / 2 ) b ] ( D  3 - -  k2D) z c 

n u 2D 2 - -  k2]u = N(D 2 --  Ic~)2v + 2(DN)(D 3 - -  UD)v + (D~N)(D 2 + k~)v 
( 2 . 2 )  

(D ~ d/d~ and k 2 = ~2 + ~a). The extinction condition on the disturbances at infinity can 
be augmented by symmetry conditions on the axis, which permits the solution of Eq. (2.2) to 
be analyzed on the interval [0, ~]. We write the corresponding boundary conditions as 

u, Du-..~-O a s  ]] - ~  oo,  ( 2 . 3 )  

U(0) ---~ D 2u(0) = 0 f o r  s y m m e t r i c a l  d i s t u r b a n c e s  ; 

Dr(O) ---- DSv(0) ---- 0 for antissnm~etrical disturbances. 

The problem of the nature of the evolution of small harmonic disturbances in a turbulent 
wake is solved by finding the eigenvalues ~i and eigenfunctions of the boundary-value prob- 
lem (2.2), (2.3). The method of solution and certain essentials associated with the boundary 
conditions at infinity are discussed in [i]. The numerical algorithm was tested using data 
from [6]. Problem (2.2), (2.3) is reduced to the well-studied case of a plane laminar wake 
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in the parallel-flow approximation by substituting -U for ~0 and introducing the phase veloc- 
ity c = -~i/aRe T. Furthermore, it is required to set N = i and to eliminate the second term 
on the left-hand side of Eq. (2.2), which is the term associated with nonparallel flow in 
the wake. 

The amplitude of the disturbances varies along the flow according to a power law [i]: 

(~, ~, w)/U~ N 8Xi~L ( 2 . 4 )  

I n  a d d i t i o n  t o  t h e  s e l f - s i m i l a r  p a r t  r ~ X - 1 / 2 ,  t h e  e x p o n e n t  a l s o  c o n t a i n s  a number c h a r a c -  
t e r i z i n g  t h e  d e c a y  o r  g r o w t h  o f  t h e  d i s t u r b a n c e s .  T h i s  number d e p e n d s  on t h e  w a v e l e n g t h  o f  
t h e  d i s t u r b a n c e s  and on Re T . I t  f o l l o w s  f rom Eq. ( 2 . 4 )  t h a t  t h e  i n t e n s i t y  o f  t h e  d i s t u r -  
b a n c e s  d e c r e a s e s  d o w n s t r e a m  f o r  - 0 . 5  < a l l  < 0,  b u t  t h e i r  a m p l i t u d e  i n c r e a s e s  r e l a t i v e  t o  
t h e  a v e r a g e  m o t i o n .  T h i s  b e h a v i o r  c a u s e s  t h e  d i s t u r b a n c e s  t o  e x e r t  a m a j o r  i n f l u e n c e  on t h e  
a v e r a g e  f l o w .  

3.  R e s u l t s  o f  N u m e r i c a l  C a l c u l a t i o n s  and D i s c u s s i o n .  I n  a d d i t i o n  t o  t h e  a v e r a g e  v e l o c -  
i t y  profile, Eq. (2.2) also contains a variable viscosity, which determines the influence of 
turbulence on the evolution of large-scale disturbances. In the case of free shear flows 
the role of viscosity is essentially that of stabilizing the disturbances, so that allowance 
for the variation of the effective crossflow viscosity does little more than abate this pro- 
cess, since the turbulent viscosity decreases toward the periphery of the flow. The fore- 
going discussion sheds light on the modification of the results when variable viscosity is 
taken into account. Because of certain computational difficulties associated with the bound- 
ary conditions at the outer boundary of the flow, we first investigate a constant turbulent 
(N ~ I) in detail. According to Squire's theorem, the nature of the evolution of three-di- 
mensional disturbances can be estimated by analyzing two-dimensional disturbances. We there- 
fore consider the case ~ = 0. We know from the theory of hydrodynamic stability that two 
types of unstable disturbances exist for plane free shear flows: symmetrical and antisym- 
metrical. As a rule, symmetrical disturbances do not pose as serious a threat. 

Calculations in the present study have shown that turbulent wake flow is unstable 
against disturbances of this type for Re T > 37.7. The variable viscosity model (1.14) gives 
a much smaller critical Reynolds number ReT, = 22.8 for a, = 0.352 and c (m-~ir/~ReT) =4.76 

(the phase velocity of these disturbances is equal to 3/4 of the maximum average-velocity 
deficit). Even in the given situation, however, the experimental values of Re T are still 
smaller than this value. We can therefore conclude that a plane turbulent wake is stable 
against small symmetrical large-scale disturbances. Structures of both symmetries have been 
observed in experimental investigations of coherent structures in a plane turbulent wake [7, 
8], even though the antisymmetrical type is more probable. The presence of symmetrical co- 
herent structures is evidently a consequence of their nonlinear, possibly resonance interac- 
tion with antisymmetrical structures. 

Figure 2 shows the domains of existence of stable and unstable antisymmetrical distur- 
bances. The smallestReynolds number at which neutral disturbances exist is equal to 2.66, 
which corresponds to ~, = 0.17 and alr = 0.i (c = -0.22). Figure 3 shows the eigenvalue ~i 
as a function of the wave number ~ for Re T = 1 (curve i) and Re T = 7 (curve 2). In the limit 
Re T ~ 0 the eiganvalue acquires the asymptotic form ~l = i~2. The neutral curve for the 
model viscosity (1.14) is represented by the dot-dashed curve in Fig. 2. The critical value 
of Re T cannot be calculated, because as ~ decreases, the outer boundary must be superseded 
by no-slip conditions on it, and this incurs a loss of computational accuracy. The changes 
in behavior of this neutral curve is fully consistent with the foregoing discussion. 

It has been observed and recorded in turbulent flow around cylinders of various geom- 
etries [5] that the wake of the generator evolved self-similarly in accordance with relation 
(1.6). However, its width increased far more rapidly when large-scale disturbances were 
present in the freestream flow. On the other hand, the presence of small-scale disturbances 
commensurate in size with the diameter of the cylinder did not influence the evolution of 
the wake. External large-scale disturbances intensify turbulent transfer in the wake, stim- 
ulating the onset of internal hydrodynamic instabilities. In the case of an undisturbed 
freestream flow the role of the external influence is fulfilled by wake-generation conditions 
such as the presence of disturbances in the boundary layer on the body and flow separation 
accompanied by the formation of vortex structures. 
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The instability of turbulent free shear flows against large-scale disturbances is evi- 
dently the mechanism responsible for maintaining the necessary condition for turbulent fluc- 
tuations and for the downstream growth of their scale. The linear theory of hydrodynamic 
stability of viscous flows can be used to determine the characteristic scale of the most 
dangerous external disturbances, which stimulate the rapid evolution of flow toward the lim- 
iting self-similar regime. 
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